Performance of arsenene and antimonene double-gate MOSFETs from first principles
نویسندگان
چکیده
منابع مشابه
Performance of arsenene and antimonene double-gate MOSFETs from first principles
In the race towards high-performance ultra-scaled devices, two-dimensional materials offer an alternative paradigm thanks to their atomic thickness suppressing short-channel effects. It is thus urgent to study the most promising candidates in realistic configurations, and here we present detailed multiscale simulations of field-effect transistors based on arsenene and antimonene monolayers as c...
متن کاملElectronic Structure and Carrier Mobilities of Arsenene and Antimonene Nanoribbons: A First-Principle Study
Arsenene and antimonene, i.e. two-dimensional (2D) As and Sb monolayers, are the recently proposed cousins of phosphorene (Angew. Chem. Int. Ed., 54, 3112 (2015)). Through first-principle calculations, we systematically investigate electronic and transport properties of the corresponding As and Sb nanoribbons, which are cut from the arsenene and antimonene nanosheets. We find that different fro...
متن کاملNumerical Simulation of Nanoscale Double-gate Mosfets
ABSTRACT The further improvement of nanoscale electron devices requires support by numerical simulations within the design process. After a briefly description of our 2D/3D-device simulator SIMBA, the results of the simulation of DG-MOSFETs are represented. Starting from a basic structure with a gate length of 30 nm, a calibration of model parameters was done based on measured values from liter...
متن کاملUltimately Thin Double-Gate SOI MOSFETs
The operation of 1–3 nm thick SOI MOSFETs, in double-gate (DG) mode and single-gate (SG) mode (for either front or back channel), is systematically analyzed. Strong interface coupling and threshold voltage variation, large influence of substrate depletion underneath the buried oxide, absence of drain current transients, degradation in electron mobility are typical effects in these ultra-thin MO...
متن کاملStrained-Si single-gate versus unstrained-Si double-gate MOSFETs
Self-consistent full-band Monte Carlo simulations are employed to compare the performance of nanoscale strained-Si single-gate (SG) and unstrained-Si double-gate (DG) MOSFETs for a gate length of 25 nm. Almost the same on-current as in the DG-MOSFET can be achieved by strain in a SG-MOSFET for the same gate overdrive. This is due to the compensation of the higher electron sheet density in the t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Communications
سال: 2016
ISSN: 2041-1723
DOI: 10.1038/ncomms12585